Question Number	Answer		Mark
1(a)	Mean velocity of charge carriers	(1)	1
1(b)(i)	v for Y is twice v for $\mathrm{X} \mathbf{O r} v$ for X is half v for Y $I=n q v A$ and n and q are constant $\mathbf{O r} v$ inversely proportional to A	$\begin{aligned} & \hline \mathbf{(1)} \\ & \mathbf{(1)} \end{aligned}$	2
*1(b)(ii	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) Resistance of Y is greater than the resistance of X (v greater for Y...) therefore electrons gain more ke between collisions (with lattice ions) Or therefore more frequent collisions (with lattice ions) Or therefore more energy lost per collision (with lattice ions) Or therefore more energy lost in a given time in collisions (with lattice ions) therefore greater pd required for a given current (MP2 and 3 accept reverse argument in terms of v for X)	(1) (1) (1)	3
	Total for Question		6

Question Number	Answer	Mark
2(a)(i)	Determines width of at least 9 coils Use of half of their diameter in πr^{2} Area $=(1.96$ to 2.42$) \times 10^{-7}\left(\mathrm{~m}^{2}\right)$ $\begin{align*} & \text { Example of calculation } \\ & 18 \text { coils }=1.00 \mathrm{~cm} \\ & \text { Diameter }=0.0100 \mathrm{~m} \div 18=5.56 \times 10^{-4} \mathrm{~m} \\ & \text { Area }=\pi \times\left(5.56 \times 10^{-4} \div 2\right)^{2} \\ & \text { Area }=2.42 \times 10^{-7} \mathrm{~m}^{2} \tag{1} \end{align*}$	3
2(a)(ii)	Use of $R=\rho l / A$ Resistivity magnitude $=4.4 \times 10^{-7}$ (show that value gives 3.7×10^{-7}) Unit $\Omega \mathrm{m}$ $\begin{aligned} & \text { Example of calculation } \\ & \rho=R A / l \\ & =22 \Omega \times 2.4 \times 10^{-7} \mathrm{~m}^{2} / 12 \mathrm{~m} \\ & =4.4 \times 10^{-7} \Omega \mathrm{~m} \end{aligned}$	3
2(a)(iii)	A sensible response with some detail, e.g. - Avoid difficulty in reading a small scale while holding it and counting turns - it can be enlarged and done more accurately - compare with unravelling and using a micrometer - remains stationary, so easier to measure accurately - you can mark the coils as you go so you don't lose count (treat parallax as neutral and)	1
2(b)	Use of ratio of lengths $\times \mathrm{pd}$ $\begin{equation*} V=8.2 \mathrm{~V} \tag{1} \end{equation*}$ $\begin{aligned} & \frac{\text { Example of calculation }}{V=(7.0 \mathrm{~cm} / 10.2 \mathrm{~cm}) \times 12 \mathrm{~V}} \\ & =8.2 \mathrm{~V} \end{aligned}$	2
	Total for question	9

Question Number	Answer		Mark
4(a)	Conversion of kW to W Use of $P=V^{2} / R$ OR $P=V I$ and $V=I R$ $R=53(\Omega)$ (to at least 2 s.f.) [no ue] Example of calculation $\begin{aligned} & R=(230 \mathrm{~V} \times 230 \mathrm{~V}) / 1000 \mathrm{~A} \\ & R=52.9 \Omega \end{aligned}$	(1) (1) (1)	3
4(b)	Use of $R=\rho l / A$ $l=6.3 \mathrm{~m}$ ('Show that' value gives 5.9 m) $\begin{aligned} & \text { Example of calculation } \\ & l=R A / \rho \\ & l=53 \Omega \times 1.3 \times 10^{-7} \mathrm{~m}^{2} / 1.1 \times 10^{-6} \Omega \mathrm{~m} \\ & l=6.3 \mathrm{~m} \end{aligned}$	(1) (1)	2
4(c)	If length halved, area must half (for same resistance) / state A α l Use of area $=\pi r^{2}$ Diameter $=0.28 \mathrm{~mm}$ or 0.29 mm OR Use of the resistivity formula Use of area $=\pi r^{2}$ To give correct diameter for their values of length and resistance (0.14 mm scores 2 marks)	(1) (1) (1) (1) (1) (1)	3
	Total for question		8

Question Number	Answer		Mark
5(a)	$\begin{aligned} & \text { Use of } Q=\text { It } \\ & Q=450 \mathrm{C} / \mathrm{A} \mathrm{~s} \end{aligned}$ Example of calculation $\begin{aligned} & Q=15000 \mathrm{~A} \times 3.0 \times 10^{-2} \mathrm{~s} \\ & Q=450 \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{(1)} \\ & \mathbf{(1)} \end{aligned}$	2
5(b)	Use of $R=\rho l / A$ Length of conductor $=24(\mathrm{~m})$ Height of statue $=$ length $-1 \mathrm{~m}=23 \mathrm{~m}$ Assumption: ANY ONE Included height of plinth. Conductor/wire doesn't carry on in ground Conductor/wire vertical/straight/parallel Example of calculation $\begin{aligned} & l=\frac{R A}{\rho} \\ & l=\frac{2.7 \times 10^{-3} \Omega \times 1.5 \times 10^{-4} \mathrm{~m}^{2}}{1.7 \times 10^{-8} \Omega \mathrm{~m}} \\ & l=23.8 \mathrm{~m} \end{aligned}$ Height of statue $=23.8-1=22.8 \mathrm{~m}$	(1) (1) (1) (1)	4
5(c)	ANY ONE The idea that the lightning is attracted to /strikes/hits the conductor OR Lightning takes shortest path (from cloud) /strikes highest point OR Action of points		1
	Total for question		7

Question Number	Answer	Mark
6(a)	Resistivity is a constant for the material / metal OR resistivity depends on / is a property of the material / metal Resistance depends on (resistivity and) length / area / dimensions $O R R=\rho I / A$ with terms defined (do not credit rearranged equation)	(1) (1)
6(b)	Correct substitution into the $\mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ formula $R=0.0085 \Omega$ [ue applies. Common error is to rearrange eqn and confuse R and ρ gives answer 3.4×10^{-14} scores zero] Example of calculation $\begin{aligned} & \mathrm{R}=\left(1.7 \times 10^{-8} \Omega \mathrm{~m} \times 0.5 \mathrm{~m}\right) / 1 \times 10^{-6} \mathrm{~m}^{2} \\ & \mathrm{R}=0.0085 \Omega \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
12	Total for question	4

Question Number	Answer	Mark
7(a)	There must be a circuit with a power supply and a labelled wire/ identifiable ends of a wire/ wavy line/ resistor/lamp in order to score any marks ANY TWO Ammeter symbol in series with wire (not in the middle of) Voltmeter symbol in parallel with wire Variable power supply/ variable resistor	$\begin{array}{r} (1) \\ (1) \\ (1) \\ (\max 2) \end{array}$
7(b)	$\begin{aligned} & \text { Use of } \mathrm{P}=\mathrm{V} \\ & \text { Rate of work }=4.5 \mathrm{~W} / \mathrm{J} \mathrm{~s}^{-1} \end{aligned}$	(1) (1)
7(c)(i)	Correct use of I =nqvA with e $=1.6 \times 10^{-19} \mathrm{C}$ $v=3.0 \times 10^{-5} \mathrm{~ms}^{-1}$ Example of calculation $\begin{aligned} & v=1.5 /\left(1.0 \times 10^{29} \times 1.6 \times 10^{-19} \times 3.1 \times 10^{-6}\right. \\ & v=3.02 \times 10^{-5} \mathrm{~ms}^{-1} \end{aligned}$	(1) (1)
7(c)(ii)	Increased lattice/ ions/ atoms vibrations (causing) resistance to increase OR increased electron collisions with ions/ atoms (This leads to a) reduction in the drift velocity / v	(1) (1) (1)
	Total for question	9

Question Number	Answer		Mark
$\mathbf{8}$	(As temperature of thermistor increases) its resistance decreases (do not credit the converse) (Large) increase in: n Or electrons (per unit volume) Or charge carriers (per unit volume)	(1)	
Any One from (conditional on mark 2 and not awarded if there are contradictory statements about any of these quantities) (slight) decrease in $v /$ velocity $/$ drift velocity A and Q remain constant Reference to R = V / I	(1)	$\mathbf{3}$	
	Total for question	$\mathbf{3}$	

Question Number	Answer		Mark
9(a)	Resistivity is a property of a material $\mathbf{O r}$ is constant for a material Resistance is a property of a wire/component/object Or Resistance depends on dimensions of a wire/component/object	(1) (1)	2
*9(b)	Circuit diagram Wire and a power supply (accept resistor symbol for wire) Ammeter in series and voltmeter in parallel with wire (an Ohmmeter across a wire with no supply scores 2 marks, an Ohmmeter across a wire with a supply scores 0 marks.) (QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.) Quantities measured Current and potential difference Or resistance (consistent with diagram) Length of wire Diameter/thickness of wire (not area or radius) Graph Graph of R against l Or graph of V against l (for constant I) Or Graph of R against l / A Or Graph of $R A$ against l (this mark is only awarded for a graph including different values of length) Determination of resistivity Determine the gradient of a relevant graph (allow for a graph of V against I) $A=\pi d^{2} / 4 \text { Or } A=\pi r^{2}$ Correct processing to find ρ consistent with the graph (if no gradient, award final mark for statement that $\rho=R A / l, \rho$ must be the subject)	(1) (1)	9
	Total for question		11

